Learning words with lexical tone:
Is manipulation of attentional focus beneficial?
Wenyi Ling & Theres Grüter (University of Hawai‘i at Mānoa)

Method
- Laboratory-based auditory novel word learning experiment
 (method inspired by Quam & Creel, 2017)
- Learning materials (novel words):

<table>
<thead>
<tr>
<th>Tone-focus group (n=31)</th>
<th>Vowel-focus group (n=31)</th>
<th>Control group (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa1 Pa2 Pa3 Sa1 Sa2 Sa3</td>
<td>Pa1 Pa2 Pa3 Si1 Si2 Si3</td>
<td>Pa1 Pu2 Pu3 Su1 Su2 Su3</td>
</tr>
</tbody>
</table>

Procedure
1. Background questionnaire
2. Pitch perception contour test (Wong & Per喜爱重音，2007)
3. Training session (3 training groups)
4. Word recognition test session
5. Word production test session (analysis in progress)

Training session
- Participants randomly assigned to one of 3 training groups
- Same instruction for all three groups: You will see objects and hear them named. Repeat the words and try to learn them. You will be tested later.
- Words presented in triads with different cue-contrastiveness in different training groups

Control group (n=28)
Vowel-focus group (n=31)
Tone-focus group (n=31)

Fig1. Examples of triads in 3 training groups:
- Each triad presented 6 times
- Self-paced, participants clicked spacebar to move on

Test session
- All three groups took the same 2-alternative forced-choice task
- 90 trials presented pseudo-randomly

Summary & Conclusions
- Unexpectedly, drawing attentional focus to a specific cue in training did not benefit word learning.
- Instead, focus on a specific cue hurt the use of other (non-focused) cues, and led to lower overall success in word learning.
- Results are consistent with Zhao et al.’s (2011) hypothesis that “the recognition of Chinese monosyllabic words might rely more on global similarity of the whole syllable structure or syllable-based holistic processing rather than phonemic segment-based processing” (p. 1761).
- Thus, the results from the current experiment might indicate that vocabulary learning in a tonal language is better supported through syllable-based holistic training than by locating attentional focus on a specific phonemic cue.

Acknowledgments: Many thanks to the Linguistic Beyond the Classroom Program for providing access to the participant pool, and to the Language Acquisition Reading Group for helpful feedback.

This project was funded by a Doctoral Dissertation Research Improvement Grant from the National Science Foundation (BCS-1824082).

References:

Motivation
- No study has investigated the effectiveness of cue-contrastive training in word learning in a controlled experimental setting.
- Contribute towards better connecting vocabulary teaching practices with word learning theories.

Participants
- 90 self-identified native English speakers
 - Age: M = 22 years (18-47)
 - No knowledge of tonal languages
 - No professional music experience

Participants randomly assigned to one of 3 training groups:
- Each triad presented 6 times
- Self-paced, participants clicked spacebar to move on

Fig2. Examples of different trial types:
- Tone-pair trial (18)
- Vowel-pair trial (18)

Baseline trials
Consonant-pair trials
Tone-pair trials
Vowel-pair trials

Results
- Pitch perception contour test: groups did not differ significantly
- Forced choice task: (method inspired by Quam & Creel, 2017)

Analysis: Generalized linear mixed-effect regression (glmer)
Accuracy = Training_Group + Trial_Type + (1 | Participant) + (1 | Stimulus) + family=bimomial(link="logit")
Predictors simple-coded (Training Group, ref=Control group; Trial Type, ref=baseline)

Fig3. Overall accuracy by training group and trial type (error bars = 95% CI)

Fig4. Overall accuracy by training group and trial type (error bars = 95% CI)

Separate models for each trial type
Accuracy = Training_Group * Trial_Type + (1 | Participant) + (1 | Stimulus) + family=bimomial(link="logit")
Training Group simple-coded (ref=Control group)

<table>
<thead>
<tr>
<th>Tone-focus group</th>
<th>Vowel-focus group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = .53 p = .02 **</td>
<td>B = .85 p = .002 **</td>
<td>B = .90 p = .006 **</td>
</tr>
<tr>
<td>Vowel-focus group</td>
<td>B = .53 p = .23</td>
<td>B = .46 p = .14</td>
</tr>
<tr>
<td>B = .53 p = .03 *</td>
<td>B = .06 p = .86</td>
<td></td>
</tr>
</tbody>
</table>

Focus on tone in training did not lead to more accurate use of tonal cues, but to less accurate use of non-focused cues.

Click to mouse click
Mouse click accuracy

Click to mouse click
Mouse click accuracy

Click to mouse click
Mouse click accuracy

Click to mouse click
Mouse click accuracy