

Classifiers in L1, L2 and Heritage Language processing

- Native speakers of Chinese can use classifiers as a cue to predict the upcoming noun (Huettig et al., 2010, Klein et al., 2012, Tsang & Chambers, 2011).
- L2 learners of Chinese and Japanese also showed a facilitative effects of the classifier (Lau & Grüter, 2015; Mitsugi, 2018) but potentially relying more strongly on semantic information (Grüter et al., 2020).
- Studies on Spanish and Polish have shown that heritage speakers can use grammatical gender as a cue to predict upcoming referents (Fuchs, 2022a; Fuchs, 2022b).
- > No published work on processing of classifiers in Vietnamese (but see Ito et al., 2020)

Research Question

To what extent do home-country raised and heritage speakers of Vietnamese use classifiers to predict upcoming nouns?

Classifiers in Vietnamese

- "Classifiers are words used to categorize word classes based on an attribute such as shape, function, or animacy" (Pham & Kohnert, 2008, p.1).
- acquired early in Vietnamese (Tran, 2010)

Obligatory occurrence of classifier

- in expressions of quantity (e.g., *hai con mèo* "two CL cats")
- with demonstratives (e.g., cái bàn này "CL table this", cái bàn kia "CL table that") or wh-words (gì "what", nào "which"), in specific or definite noun phrases (e.g., cái bàn nào "CL table which")
- with question words (bao nhiêu, mấy "how many") that require a numeral response (e.g., có mấy con cá "how many CL fish")
- > Optional in other contexts (e.g., anh ấy thích ăn cá "he likes eating fish")

Classifiers used in this study

Psychology: Learning, Memory, and Cognition, 37, 1065–1080.

- The two most common classifier in Vietnamese (Dao, 2012; Tran, 2011):
 - cái : generally used with inanimate objects (e.g., cái ghế "a chair")
 - con: generally used with animate objects (e.g., con chó "a dog"), but can also be used with *some inanimate* objects (e.g., con dao "a knife", con thuyền "a boat", con diều "a kite")

References

Dao, L. (2012). The Vietnamese classifiers 'CON', 'CAI' and the Natural Semantic Metalanguage (NSM) approach: A preliminary study. In Austral *Linguistic Society Conference*. Australian Linguistic Society. http://hdl.handle.net/1885/9327 Fuchs, Z. (2022a). Eyetracking evidence for heritage speakers' access to abstract syntactic agreement features in real-time processing. Frontie psychology, 5863. https://doi.org/10.3389/fpsyg.2022.960376 Fuchs, Z. (2022b). Facilitative use of grammatical gender in Heritage Spanish. Linguistic Approaches to Bilingualism, 12(6), 845-871. Grüter, T., Lau, E., & Ling, W. (2020). How classifiers facilitate predictive processing in L1 and L2 Chinese: The role of semantic and grammatica Language, Cognition and Neuroscience, 35(2), 221–234. https://doi.org/10.1080/23273798.2019.1648840

Huettig, F., Chen, J., Bowerman, M., & Majid, A. (2010). Do language-specific categories shape conceptual processing? Mandarin classifier dis influence eye gaze behavior, but only during linguistic processing. *Journal of Cognition and Culture, 10*, 39–58.

Ito, A., Nguyen, H. T. T. & Knoeferle, P. (2020) Effects of verb and classifier constraints on expectations in first and second language comprehenergy and second language compr Poster presented at the CUNY Conference on Human Sentence Processing, Amherst, USA. [poster]

Klein, N. M., Carlson G. N., Li, R., Jaeger T. F., & Tanenhaus, M. K. (2012). Classifying and massifying incrementally in Chinese language compre In D. Massam (Ed.), Count and mass across languages (pp. 261–282). Oxford, UK: Oxford University Press Lau, E. & T. Grüter. (2015). Real-time processing of classifier information by L2 speakers of Chinese. In E. Grillo & K. Jepson (eds.), Proceedings

39th Annual Boston University Conference on Language Development, 311–323. Somerville, MA: Cascadilla Press. Le, D. T., & Quasthoff, U. (2016). Construction and analysis of a large Vietnamese text corpus. In Proceedings of the Tenth International Confer Language Resources and Evaluation (LREC'16) (pp. 412-416).

Mitsugi, S. (2018). Generating predictions based on semantic categories in a second language: A case of numeral classifiers in Japanese. Inter Review of Applied Linguistics. (pub-lished online 2018-07-03). Retrieved from https://www. degruyter.com/view/j/iral.ahead-of-print/iral-2 0118/iral- 2017-0118.xml

Pham, G. & Kohnert, K. (2008). A corpus-based analysis of Vietnamese 'classifiers' con and cái. *Mon-Khmer Studies, 38,* 161-171. Tran, J. (2010). Child acquisition of Vietnamese classifier phrases. Journal of Southeast Asian Linguistics Society, 3, 111-137. Tran, J. (2011). The acquisition of Vietnamese classifiers. Unpublished doctoral dissertation, University of Hawaii at Manoa. Tsang, C., & Chambers, C. (2011). Appearances aren't every-thing: Shape classifiers and referential processing in Cantonese. Journal of Exper

Facilitative use of classifiers in heritage Vietnamese Hoan Nguyen, Theres Grüter | University of Hawai'i at Mānoa

Participants

recruited at the University of Hawai'i and the Vietnamese community in Hawai'i. **Table 1.** Participant information (means and ranges)

	Home-country raised speakers (L1 group)	Heritage speakers (HS group)
Ν	19 (12 F, 7 M)	26 (15 F, 11 M)
Age	35.8 (19-55)	20.7 (18-30)
Self-rated Proficiency Vietnamese (/10)	9 (7-10)	5.5 (1-9)
Self-rated Proficiency English (/10)	7.47 (5-10)	8.96 (6-10)

Inclusion criteria

- For HS group: 1) placed in a Vietnamese class at UHM; 2) came from Vietnamesespeaking families with at least one parent speaking Vietnamese as a dominant language at home.
- For L1 group: 1) born and raised in Vietnam; 2) AOA to the US: after 18 years old; 3) currently living in Hawai'i.

Materials

- Classifier-noun pairing test (fill in the blank, 25 items; incl. 12 target nouns) Example: *Tôi có hai* _____*chó (I have two* _____*dogs)* Expected answer: *con* [animate classifier]
- Visual world experiment
- 24 critical trials (16 typical noun trials: 8 SAME cond., 8 DIFFERENT cond.; 8 atypical nouns trials); 16 filler trials

Table 2. List of Typical and Atypical Nouns and their Frequency in the Vietnamese Mixed Corpus (Le & Quasthoff, 2016)

Classifier	TYPICAL Nouns	Classifier	TYPICAL Nouns	Classifier	ATYPICAL Nouns	
	<i>chó '</i> dog' (77,093)		<i>bát</i> 'bowl' (95,239)		<i>dao</i> 'knife' (129,914) <i>thuyền</i> 'boat' (153,961) <i>tem</i> 'stamp' (27,001)	
con	<i>mèo</i> 'cat' (47,739)	cái	<i>điện thoại</i> 'phone' (N/A)	CON (inanimate)		
(animate)	<i>gà '</i> chicken' (184,905)	(inanimate)	<i>bàn</i> 'table' (997,400)			
	<i>chim</i> 'bird' (118,884)		<i>ghế</i> 'chair' (152,127)		<i>diều</i> 'kite' (18,550)	

Figure 1. Sample of Visual Stimuli in **Typical** Noun Trials

SAME classifier condition

DIFFERENT classifier condition

	Figure 2. Sampl	e of Visual St	imuli in	Atyp	ical Noun Trials		-
lian					Stimulus ser	ntence:	Prc
ers in al cues.					where is cl	knife	•
tinctions							٠
nsion. ehension.		Figure 3	8. Time V	Vindo	ows for analysis		
s of the		Carrier p	Carrier phrase		sifier	Noun	
rence on		<i>Đâu là</i> Where is		<i>con</i> animate classifier		<i>chó</i> dog	
national 2017-					 Classifier window 		n window
imental			(classifier o	20 nset	0ms noun ons	560ms	

Acknowledgments: Many thanks to Huy Phung, Jieun Kim, Hitoshi Nishizawa and Dr. Isbell for for providing valuable guidance on data analysis. This project also received support from the Carr Holmes fund.

ocedure

- Language Background
- Questionnaire
- Visual world experiment
- (SMI RED250 eye-tracker, 60 Hz)
- Vietnamese listening
- proficiency test
- **Classifier-noun pairing test**

TYPICAL nouns

Results

- Accuracy on fill-the-blank test: L1 group: 100%; HS group: *M*=66.9% (*SD*=21.5)
- Mouseclick accuracy in VWP task: L1 group: 100%; HS group: M=95% (SD=5.5)
- Eye gaze analysis excludes trials with incorrect mouseclicks and items with

Figure 4. Typical Nouns: Mean Proportion of Looks to Target by Group, Time Window, and Condition, Error bars indicate 95% Cls.

- yet heritage speakers may do so at a slight delay when compared to homecountry raised speakers.

Figure 5. Mean Proportion of Looks over Time (by Group and Condition)